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ON SOME PROPERTIES OF OPTIMAL THERMOELASTIC DESIGNS IN THE 
CASE OF FIXED STRESS AND DEFORMATION FIELDS* 

P.A. SLAV and Y'J.V. ~IROVS~S 

Sets of distributions of elastic moduli safe studied, giving rise to 
identical deformation or stress fields in a thermoelastic body. The affine 

character of the sets is proved and their interdependence is studied. 
It is shown that the problem of the distribution of the elastic parameters 
realizing a minimal stress level for the given deformation field represents 
a problem of convex programming. The case of the Optimal design Of a 
thermoelastic beam is discussed. 

In view of the wide range of possibilities Of controlling new tech- 
nological methods of creating new materials and structures, the problem 
arises of optimal design, i.e. of constructing such fields of elastic 
parameters, which would ensure the stress-strain field most suitable for 
use. The problem of the optimal distribution of the Lame'parameters in 
an elastic body was studied in /l/ using the condition of least work done 
by the external forces. The distribution of the Las&parameters maximizing 
the torsional rigidity of a prismatic rod was studied in /2/. The problem 
of the optimal distribution of Young's modulus in a rod was solved in /3/ 
using the condition of maximum critical load causing loss of stability. 
The distribution of Young's modulus in a prestressed beam was obtained in 
/4/ from the requirement that the highest first eigenfrequency be realized. 

In many cases it is important not only to improve the rigidity 
characteristics of the constructions, but also to reduce the stress level. 
Below the authors investigate the general properties of the sets of elastic 
moduli distributions ensuring, for fixed loads and the temperature field, 
the realization of one and the same deformation or stress field. It is 
established that the sets have an affine structure, intersect at a unique 
point, and, that the tangent spaces of these sets are mutually complementary. 

1. Let us consider a inhomogeneous, linearly elastic isotropic body occupying a finite 
volume 1-c R3 with piecewise smooth surface A, at the point Al of which the displacements 

u, are equal to zero. The remaining part A, is acted upon by a surface load pi, which 
generates, together with the volume forces 

in the state of equikbrium 
and the temperature field 'I', the stresses Uij 

and deformations Eij 1 .' . 
We shall specify the properties of an isotropic body by means ofavector function ). 

with components i., (.) = K (.), I.? (.) = G (.), or a vector function p, p1 (.) = K-l (.), & (.) = G-l(*). 
Here li,G denote the volume elasticity and shear moduli. The functions i., p are assumed 
to belong to the set Q, of vector functions with strictly positive components belonging 
to the space P of vector functions piecewise smooth in V, with the norm 

We shall assume that the properties of the material and deformed state of the body allow 
the application of the relations of the linear theory of thermoelasticity /5/. Following the 
variational methods /6/, we can reduce them to an equivalent problem of the minimum of a 
quadratic functional. We introduce, in the space of square siunmable in V second rank tensors, 

3=jtij'r,,(.)=f,,i.).(.)~r.;(r.i)=ifri;~,,dl.< -} (1.1) 

the equivalent metric, using the energetic scalar product 

[F. P”‘], = ( j-&,,kE;:; - L&y) di‘. 11 e ijil = [e. f], (1.2) 
i. 

where eij. 
'ij"l are deviators of the tensors Eij. E,j"‘ , and repeated indices denote summation. 

*Prikl.Mate:a.fifekhm.,49,3,476-464,1965 
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We shall use the product (1.2) for the deformation fields. For the stress fields we shall 
introduce the elastic scalar product generating a metric equivalent to (1.2) 

[t%rs(l)]e= ~~~~~~~~~~ + c lj Cl I!$ = (cT,UJ@ (1.3) 
G 

~*~~~~~)~~~~, 

where Sij+sij") are deviators of the tensors Uijs Oijtfis The stress and deformation tensors 
are connected by the Duhamel-Neumann law 

ona= A&l,. sij = &eilfi (1.4) 

&j v= "i,-- f,,*> &ij* tT U(T - To) 6,j 

Here a is the linear thermal coefficient of expansion, T, is the initial temperature 
in the undeformed state, and Sij is the Kronecker delta. 

The variational Lagrange and Castigliano principles of the linear problem of 
thermoelasticfty /5/ can be written, using the notation of (1.2?, (1.31, in the form 

where the space r of the kinematically possible deformations is constructed as the complement, 
in the metric (X.21, to the following space: 

D={E13uiE C* (ri): Efj = “p (U,~j + Uj,i) Uj (‘) = 0. l(.l_. 7) 

(.) 5 A,): 3’ = B 

The space 9' of statically possible stresses is constructed as the complement, in the 
metric (1.31, to the space 

Were i?'(!‘) is a space of functions k-times continuously differentiable on V (the index 
after the comma indicates diffexentiation with respect to the corresponding coordinate), ani 

nj is the vector normal to the surface. The symbol Uij* in (1.5). (1.6) denotes an arbitrary 
particular solution satisfying, atiost everywhere on V, the equations of equilibrium in the 
stresses and the force boundary conditions on d:. 

We further assume *at the tensors f*‘ cr* are square summable on V. The problem (1.5). (1.6) 
represent special cases of the protLens on a minim;;?, of quadratic functionals /7/ whose 
conditions af minimum 

E E 1’: /F - E*. E 1 1, -- I* (E.1.). ye*‘. 5 f !1.9) 
T z gr : [a* - T. Tfi’]l = -1, (+‘), k-T” E \li (1.10) 

uniquely define the deformations P and stresses LS== u* - 1. 

Let us now denote by _Ir the set of distributions of elastic moduli IS q_ for which 
one and the same deformaticn field P is realized in the state of equilibrium under the 
action of the given loari and the temperature field. Correspondingly, B, is the set Of 
distributions of elastic complianees p _C 0,. realizing the distribution of stresses (J. 

We shall show that .I,. Bn have an affins structure. We shall select two designsrealizing 
the same distrikmtion of clefornations i,'~ SC. i."SG .I,. and consider the admissible design 
%E Q,, lying CT, the straight line connecting i.'.?.". Writing condition (1.9) for each design, 
multiplying the first relation by p and combining with the second relation multiplied by 

(1 - P)t we again obtairz, by \A- *;~tue of the linear dependence of the scalar product (1.2) on 
2% , conditions (1.9) where i. = (pi.. - (1 - p) A") E -2,. Carrying out a similar analysis of 

relations (l.lQ), WE can conclude that the sets ,$,.B, contain, together with any two of their 
points, a part of the straight line connecting these points and lying in Q,, i-e. -1,.E& 
have an affine structure 

A' 5 -2,. i." E _I, a= (pj.' - (1 - p) i.") g ‘1, (:.;I) 

Yp E R : pi.’ - (2 - p) j.” E Q_; g ES 8,. fY E B, + 
(pp’ - (1 - p) fY, E 3,. rp -_= R: pB' i tl -p) B"E Q, 

2. WE shall investigate e&e relations connecting the sets of designs .{E, reaiizing the 

same deformation field, with the sets of designs Bo. realizing the same stress field, and 

obtain the explicit expressions for the Sets _‘h, &. 
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We shall introduce the space To of stresses corresponding to the deformations form r, 

in accordance with Hooke's law, as the closure inthe metric (1.3) of the following space: 

I), = (0. t se eiiz I): okk = hke% $11 = @id (2.X) 

-K-o = fi, 

We shall also introduce the space Ye of deformations correspor&ing to the stresses 
from Y in accordance with Hooke's law, as a closure inthe metric (1.2) of the following 
space: 

Aft = {& 1 30 c% .bf: Ekk = &bnn, eii = &$ij) (2.2) 

where the spaces D, M are given by (I.?), (1.8). 
In what follows, we shall make use of the fact that the spaces introduced are connected 

by the relations 
3 = Y t$ I”,, 3 = r 6 Y,. (2.3) 

The first property was proved in /6/. The second property is equivalent to the following 
two assertions: 

1~'. 91, = 0, YE* E Ye, YE* E r C2.4) 

Yif E 3, 38’ 63 Y*, 238 E r: e = d + 9 (2.5) 

Property (2.4) is proved by passing to the limit in the relation describing the 
orthogonality of the spaces D.M,, obtained by integration using Gauss's formula. To prove 
relation (Z-E;), we shall consider the problem of the equilibrium of a body acted upon by the 
distortion 5 /S/ in the absence of an external load. Using condition (1.5), we obtain the 
problem of the minimum of a quadratic functional with the following linear functional bounded 
in I-: 

f": $F‘J - :/!*- m$ 21[F.F]il$allE$ 

b; = ? it,:) * ntax max hi(*) 
i.)EV i=1,2 

Solutions of such problems exist and are unique /7/. The stresses arising in this case 
are selfbalancing; therefore the corresponding purely elastic parts of the deformations e'= 
ie" - ii belong to Y,. The deformations 8" belong to r by virtue of thier construction. 
This proves property (2.5), and hence (2.3). 

We shall find a relation connecting the sets _ic. 3, using the dependence of the stresses 
and deformations on the design of the distribution of elastic moduli. We consider, together 
with the design h for @) from 0,. and the corresponding deformations E =I e(A) and stresses 
0 = u (fl), another design ?.' = ii J_ p (or @' = p - y) . The corresponding stresses li' and 
deformations E' axe found using the perturbation me+&od, inthe form of the series /S/ 

(2.6) 

where the bilinear operators T: Qx 3-t Y+ A: Q x 3- r are defined by the conditions 

y E Q, CJ 5 3. (T$l) E Y': [~',a. 216 = lO.?l~, b-7 E Y (2.7) 

p E 0‘ E 55 3. (&e) E r : IA&e, &'li. = le, E'la. Vie' E r (2.8) 

The quantities i.&, [.I, are found using the formulas (1.2),(1.3) where 8 is replaced by 
I',?, by p. Following IS/, we can show that series (2.6) converge on the energetic norm 
In the regions containing, respectively, the spheres 

; B'-- B /) < fl. rl =I vraj min min p, j: I.'-- 1. :,< rz (2.9) 
L ,;_l‘z=L? 

r2 = vrai min min i+( .) 
( )fl' ial.? 

We shall assume that the distribntioc of the mcduli of 2. undergoes an infinitesimal 
change 8h, when the corresponding change in the compliances is determined after the differ- 
entiation 

gI-'(*),S@i {*) = -i*i-l (.)‘6A, (*), (*)E 1', i = f, 2 (2.10) 

When varying the stresses 60 and deformations 6~ in series (2.6), we shall restrict 
ourselves to quantities of the first order of smallness 

Let the tensors E', u‘ 
we can obtain the property 

be connected by Hooke's law (1.4). Then, using (2.10) (i..?), (1.31, 
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[u, u’l*fi = - I& - 9, E’lbi 

which enables us to write the conditions of invariance of the deformations and stresses to 
a small variation in the design, in the form 

60 = 0 @ [g, E’l,. = 0, VE E YY, (2.11) 
bE = 0 ij is, &'I~ = 0, v&l E r 

where the tensor g is given by the relations 

Property (2.3) consisting of the fact that the space r is an orthogonal complement Yy, 
to the space 3, yields the relation connecting the first and second condition of (2.11). 
First, according to (2.4) both these conditions cannot be satisfied simultaneously when 
920, i.e., there is no direction in which the elastic moduli 6h undergo a small change 
without a'change in the deformations and stresses. Secondly, according to (2.5) any small 
change inthe design 6i. can be represented uniquely in the form of a sum 6h' T 6Y so that 
the change in the design bh' will not affect the stresses and a change in iih" will not affect 
the deformations. 

We can carry out a suitable analysis based onthe first relation of (2.3) for small 
elastic compliances 6g' not affecting the stresses, and for the changes in Sfl" not 
affecting the deformations. 

Let us compare the set A, of distributions of the elastic moduli realizing the same 
deformation field E. with the set B, of distributions of the corresponding elastic 
compliances. Let us also compare the set B, of distributions of elastic compl,iances 
realizing a single stress field 8, with the set & of the corresponding distributions of 
the elastic moduli. Then the results obtained here have thefollowing geometrical interpretation. 
The family of affine sets -1, covers, together with the family of sets .b , the whole set 
of possible designs Q+. Every set -3, intersects the set & at one point at the most, 
and the spaces constructed, tangent to .I, and ,I, at this point complement each other. 
The families of affine sets B, and B, have analogous properties. 

The sets .I,. B, can be constructed in terms of one of their representative elements 
i. E .I,, fi E B, as follows: 

,I, = {(i, - u) E 0,: k - 9. e'~, = 0, YE' E r-1 (2.13) 

B, = {(p 1 u) E o_: [cr. 0'1~ = 0, Vu' E Y) (2.14) 

To prove (2.13) we assume that the increment of the design )1 satisfies the condrt;on 

(J E Q Ii - E'. E'], = i'. YF' E r (i.i5) 

Let Us choose a positive nurrber 1, , so that the design i.' = i. T t,~ belongs to the sphere 
(2.9) of convergence of the series (2.6! for e'. According to condition (2.15), the 
element 3, (E - f.1, found from (2.8) and the remaining elements (-+,)"(E-E*), are all Zero. 
This means that (i. A I,F, E \r. But then, according to property (1.11) of the affinity of the 
'set .2, , the whole part of the straight line ;.T~P. lying within the admissible set Q, 

also lies in -1,. In other words, the designs constructed according to (2.13) indeed belong 
to the set .Ic, It remains tc show that construction (2.13) exhausts all elements of the 
set .Ir. Let us assume the opposite, i.e. that 

3 (i.+ p, E .Ic: 3t' E r: jt. - E'. q 7 0 (2.16) 

The property of the affinity Of .jr (i.jti implies that the whole part of the straight line 

(i. -+ t,,) belongs to .Jc, Let Us choose, on this part, a rectilinear segment f~lu.t,l, such 

that the power series in t 

converges. Since the above series represents an expansion of a zero function defined on IO 1~1. 
it follows from the well-known property /9/ of the uniqueness of a power series that all the 

coefficients cn must vanish, and this contradicts, at n = 1 assumption (2.16). 
Relation (2.13) determining the explicit form of the affine subset .jr. is thus completely 

proved. Relation (2.14) determining the affine structure Of the set -B,. is proved in the 

same manner. 
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3. In designing certain highly accurate in$ruments (e.g. radio telescopes), the 
requirement of strength is accompanied by the d&atid'theit the displacement (deformation) field 
be of prescribed form. in this connection we pose the following model problem of optimal 

design e We seek, for a tbermoelastic body discussed in Sect.1, a distribution of elastic 
moduli such that a given deformation field is realizedinthe state of equilibrium et the 
minimum stress level. &low we shall show that the problem formulated here refers to fA@ 
well-known class of problems of convex programming ilO/. 

We shall measure the stress level corresponding to the design h, using the quantity 

P@)==il~(fi)!!. ~~~l=~~~r(~(*)) (3.1) 

r(u)= (cio~ku,, i C*QSij)"' 

where Cl* cz are given positive numbers and s is the deviator of the tensor (I. The property 

of positive definiteness and uniformity of the norm 11 aI/ is obvious, and the triangle 
inequality for it follow5 from the property r (a' + dl)< r(o')+- r fb) and the properties of 

the max operation over the region V. 
Using Hooke's law (1.4) and property (1.11) of the affinity of the Set 4, we obtain 

the affinity of the setofthe corresponding stresses 

h' E -4,. X" fz Ar, tA' -+- (i - t) 3F E Q+ =+ a (a"+- (i - (3.2) 

t) h") = to (3,') -!- (1 - t) u (h") 

The relations (3.i), (3.2) enable us to construct the following sequence of inequalities 
proving the convexity of the functional p(h) on Q, : 

p (fk I (i - t) k*) = I] a (tx’ -+ (i - t) h”} 11 = 

11 ta (2.‘) 7 (I - t1 @ (h”) II =G t Ii 0 (h’l Ii -t (I - t1 II fJ 07 II= 

tp (ii’) + (I - t) p We, t > 0, (t - tf > 0 

Therefore the Problem of optimal design 

p (h) --r-min,, h E & (3.3) 

is a problem of minimizing the convex functional p(A) on the convex Set &, i.e. a problem 
of convex progrming /lo/. We note that the problem of designing a body of optimal rigidity 
for the given stress field is solved inthe same manner , and also represents a problem of 
convex programming. 

4. We shall conSider, as an example, the problem of determining the optimal distribution 
of Young's modulus E(z) over the length of a thermoelastic beam, from the condition of the 
lowest maximum value of the stress modulus a for the given distribution of the flexure w(z). 
A beam, rigidly clamped at both ends z = O,Z= I, is in an equilibrium state under the action 
of a distributed transverse load II (2) and temperature field T&Z). Using the hypothesis of 

Plane sections and assuming that the temperature field is compatible with the conditions of 
Pure bending, we obtain the equations of equilibrium in the form /ll/ 

(Et)" = 3; f r III?* - Ri, I = 1 SoM z~dA, IR = 14.1) 
A A 

Here A is the area, generally speaking, of a transverse cross-section of the beam. 
Integrating Eq.(4.1), we obtaintheiaw of distribution of Young’s modulus 

(4.2! 

for the values of z for which f(x)~O. In what follows, 
function f(x) has a finite niLzber of roots on 

we shall assume that the given 
IO, 11. The undefined constants c1 and cg 

must satisfy the condition E(z~>O, i.e. 

sign (cl* + cs i- cF it)) = sign f (rf (4.31 

The property of affinity of the set of distributions E(X) 
(4.2h (4.3). can be confirmed directly. 

constructed accoxding to 

The possibility of satisfying condition 
w and m. 

(4.3) depends on the specified distributions of 
If the flexure W(E) is realized for some distribution then condition 

(4.3) will hold for at least one pair of values of 
E (2) r 0 , 

(4.3) 
Cat En. If, on the other hand, condition 

admits of an arbitrariness in the choice of the parameters c,, Qr then it can be used 
to reduce the stress level 
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The convex nature of problem (4.3), (4.4) can be confirmed by direct substitution. 
Below we give! an analytic solution of this problem for the following initial data: 

p (z) = p = const; T (2. 2) = fl (;)-2; w (cc) = w, = eonrt (4.5) 

where W(z) is the moment of the reaction of the beam at thecross-section =. When the 
distributed external load is constant, the bending moment Mhas a parabolic distribution and 
the initial data for the function j= M.&?-l must therefore correspond to one of the following 
cases: 

f (t) < 0, i E to, II, ==#= 4% f (zoi = 0, I* E 1% 11 

Substituting (4.5) into (4.4) we obtain the problem 

f]ob=rV;i mar 1 r(cl, cp, +)I+ rain 
=X0, II 

7 = flz + c1 + l/,qz"; sign r (c,, ";r.+z) -5 sign j (I), I E IO, 11 

(4.11) 

(4.121 

After solving this problem we shall find the undefined constants Cl3 cz2 appearing in 
expression (4.2) for the optimal distribution of Young's modulus in the beam 

E(r) = (Id- my'r 7 = c,z + e*+ 'i*gr2 (4 13' ., , 

AS we shall see below, the method of solving 14.12) will depend on which of the conditions 
(4.6) - f4.li) is satisfied by the function f. In case f4.6), problem (4.12) can be reduced, 
using the substitution c1 = -&,-I- Vg,q, t2= t , to the form 

We note that if we fix IE ]O,r,], then S(r,f)> 0 will increase with t. If we fix r~ls~, 

II, then S(z, t)<O will decrease with t. Therefore a global optimum is attained at t='iaqx& 
and the optimal distribution of Young's modulus (4.13) has the form (4,131 when r=li,p(+--r,) 
(2 - 9. 

Case (4.7) reducestothe case already discussed, by changing the direction and the origin 
of the Or axis. 

In case (4.8) the parameters Cl1 c2 are chosen so that the graph of the parabola r= T(Z) 
lies above the segment [O,Z] of the Or axis, or, if the points of intersection of the parabola 
with the axis lie to the left of the segment 10. I], of if these points lie to the right of the 

segment IO, I]. The requirements listed above are satisfied on the set N formed by combining 
the following three sets: 

N= j 

i +c,>-c,l - +qtz: El<--ql 1 
This set (see the figure) has a lower bound fixed by a line composed of a straight line 

i: c* = --(,I - 1 *qI' CT. the segment c,E]--c~. -qil. the parabola 2: c2 = l/1gc12 on the segmentc,E J-+.0] 

and the OC, axis on the half-line Cl f IO. mj. The largest stress modulus occurs at one 
of the beam ends 

1% z = IT-’ max 
@ IELO.il 

1 r (C,, c*, r) 1 = Ii‘;** max {I r (ct. ~2~ 0) 1, I r (cb Y, 2) 1) = 

if.;1 max (cp, f2 - ic, - ‘/n(il) I) 

The figiire depicts the set L of parameters Cl> 
ci. for which (j (T /I f 'I'~w,-'~P. The set L has an upper 

bound fixed by a broken line composed of the straight 
line 3 e2 = li,gP for t, E ]- m. --','2pl] and the straight 
line 4: c2 = l;tqls - (cI + '/2gt) 1. c1 e I--'i,ql, ml. We see 

r that the sets N and L have one common point cl* =-I ,ql, 
' - "8g12. which also defines the optimal distribution 

2 young's modulus for case (4.8) in the form (4.13) 

with r = 1 %q (r - I’* Z)*. 
Considering the case (4.91, we can show that every 

paraboia r = C,I -: c2 T '~241' which takes non-positive 
values on the segment IQ. I] t has a graph situated 
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not higher than the graph of the parabola V,qr (+--I) passing through the points (0. 0); ft. 0). 

Therefore the values c,*= --‘I&I, cl*= 0 are optimal and the law of distribution of Young's 

modulus for case (4.9) corresponds to (4.13) with r=V,qx(t-0. 
Finally, the conditions (4.10),(4.11) uniquely define the values of the parameters E,, cl, 

i.e, in everyoneofthese cases the process of specifying the distributions of the flexures 
does not leave any arbitrariness for reducing the stress lsvel. The distributions of Young's 

modulus have the form (4.13) for r = Vnq(t -z~)(z- ~3, r= %q(r - 2,)’ respectively. 
The results obtained in Sect. 1 and 2 can be illustrated by the example in question. 

Here we must remember that the bending moment Hreprasents the generalized stress, and the 
variation in curvature x is the generalized deformation. 

Let us introduce the energetic scalar product analogous to (1.3) 

Here the space Y(1.8) of selfbalanced stresses has a corresponding space of bending 
moments satisfying the following homogeneous equations of equilibrium M'=O: 

‘4 = {M 1 M = ~~1 + cpr C, E R, ca Ed Rt (4.15) 

The feel-Ne~annrelations(l.4) have the form 

M I 8-11 (x-X*), X* = ml-', x = w= (4.16) 

Using this to obtain the expression for w", we carry out the integration and substitute 

the boundary conditions W (I) = 10' (I) = 0 . This yields the following set of equations: 

[M,J18 = Ill, [M, '16 = 02, Af = WfQ + o, .~=-_Sr'-~ml-ld? (4.17) 
0 

Let us consider, together with the design of the distribution of the compliance $ and 
the corresponding bending moment I$, anotherdesign (@+y) with bending moment MfAM. 
Using system (4.17) we obtain 

When the variationinthe design y is specified, the above system yields uniquely AC,, AC,, 
since its discriminant is, by virtue of the Cauchy-Schwartz inequality, different from zero. 
From system (4.18) it follows that in order to have the same bending moments in the designs 
B and fi+y of the beam, it is necessary and sufficient that 

{M, &"I, = 0, v&f"' E Y * A.&f = 0 f4.19? 

Condition (4.19) is identical apart from the notation , with (2.14), reveals the affine 
structure of the designs with the same stress field, and cm be used inthe problem ofoptimizing 
the beam flexure for a given state of stress. 

Let the designs of the distribution of the compliance fl undergo an infinitesimal change 

W. Then the change in curvature calculated from (4.16) will be 

6%" = P'b (MB) 

Since &ME Y, and by virtue of the kinematic boundary conditions br" = ii * &w = 0, 
the condition of invarianceofthe flexure to a small variation in the design has the form 

61c= OogEY; g= bp.p-‘nf (4.20) 

At the same time, from (4.19) it follows that the necessary and sufficient condition for 
invarianceofthe stresses is, that the relative change in compliance g be orthogonal to Y, 
i.e. 

6M = 0 9 [g, M'"] = 0 VM") E Y 0 ' (4.21) 

The relations (4.20), (4.21) correspond to the result of Sect. 2 fsee (2.11)) according to 
which any small ehangeinthe design 6g can be represented in the form of a sum of the change 
6$', leaving the displacements unchanged, and 6g', leaving the stresses unchanged, The 
result can be utilized in new problems of optimal design, taking into account Simultaneously 
the reduction in the level of stresses and the deformations. For example, it follows from it 
that a small change inthe design can be found, 
deformations [e(p)[; are both reduced. 

for which the level of stresses lio(&l and 
This is connected with the fact that the gradients 

of the functionals /ia((B)/ and I/E@; lie in mutually complementary subspaces. 
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THE PLANE PROBLEM OF ELECTROELASTICITY FOR A PIEZOELECTRIC 
LAYER WITH A PERIODIC SYSTEtl OF ELECTRODES AT THE SURFACES* 

V.A. KOKUNOV B.A. KUDRYAVTSEV AND N.A. SENIK 

Static electroelasticity equations are used to study the stress state and 
the electric-field distribution in a piezoelectric layer at whose surface 
a periodic system of infinitely thin electrodes is situated. It is assumed 
that the layer material is piezoelectric belonging to the 6mm symmetry 
class, and the axis of symmetry is perpendicular to the middle surface of 
the layer. The mechanical displacements and electric potential are 
determined, taking the periodicity of the electrode system into account, 
in the form of trigonometric series, and the electrical and mechanical 
boundary conditions at the layer surfaces lead to the dual series equations 
whose solution yields the expression for the electric charge distribution 
density on each electrode. Formulas are given for determing the electric 
potential at the layer surfaces between the electrodes, and the mechanical 
stresses near the electrode edge. It is shown that the normal stresses at 
the layer surface have a singularity at the electrode edge /l/ whose presence 
may lead to the appearance of microcracks within this zone. 

1. We shall consider the plane deformation of a piezoelectric layer / L i<h, /z I< x 
caused by the action of the electric potential difference on the periodic system of electrodes, 
with the electric potentials I'0 and -r,on the upper face z = h and lower face z=-h 
of the layer (Fig.1). In the case of a piezoelectric material of class 6mm. whose axis of 

symmetry coincides with the z-axis, the components of the stresses and electric induction are 
given by the formulas 

. 
a == cn g - c,+- T ealx, 
a,,=cll(~ + ~) i .I.; arr=C1s~ TC119g -+~ 

(1.1) 

.Li, = els ($ A g) --~,~a -$ 
du 

D, = es1 z - ess + -Ft# s (1.2; 

Here cl,, c13. CSS. CU are the moduli of elasticity, es,. eSS, e,, are the piezoelectric moduli, 

E$, EIZ are the dielectric constants, a, ut are the components of the displacement vector 
in the direction of the I and z axes respectively, and CF is the electric potential. 

The mechanical displacements a, U and electric potential are found from the system of 

*prikl.Matem.Mekhan.,49,3,485-491,196s. 


